skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Achieving net-zero greenhouse gas emissions likely entails not only lowering emissions but also deploying carbon dioxide (CO2) removal technologies. We explored the annual potential to store CO2in building materials. We found that fully replacing conventional building materials with CO2-storing alternatives in new infrastructure could store as much as 16.6 ± 2.8 billion tonnes of CO2each year—roughly 50% of anthropogenic CO2emissions in 2021. The total storage potential is far more sensitive to the scale of materials used than the quantity of carbon stored per unit mass of materials. Moreover, the carbon storage reservoir of building materials will grow in proportion to demand for such materials, which could reduce demand for more costly or environmentally risky geological, terrestrial, or ocean storage. 
    more » « less
    Free, publicly-accessible full text available January 9, 2026
  2. Eberly, Janice; Steinsson, Jón (Ed.)
    Free, publicly-accessible full text available November 20, 2025
  3. How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland—a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization—most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation. 
    more » « less
  4. Cory, Jenny (Ed.)
    Abstract Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought. 
    more » « less
  5. Abstract Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning. 
    more » « less
  6. Ricinulei Thorell, 1876 is an order of Arachnida currently represented in the New and Old Worlds by 103 living species. The order is also represented in the fossil record from the Carboniferous (ca. 305–319 Ma) and the Cretaceous (ca. 99 Ma) periods. In the present contribution, Hirsutisoma grimaldii sp. nov., a new extinct species of the suborder Primoricinulei Wunderlich, 2015, is described from a specimen preserved in Cretaceous Burmese amber. The specimen is a well-preserved adult male in which several taxonomically informative structures are visible, allowing the new species to be differentiated from Hirsutisoma bruckschi Wunderlich, 2017, the only other congener for which a male is known. This description raises the number of Cretaceous Ricinulei species to six. A comparative table documents morphological differences among the various species of this lineage. Hypotheses concerning the paleoecology and functional morphology of this species and, by extrapolation, other primoricinuleids, are presented. The evidence suggests that Primoricinulei were corticolous, scansorial predators. 
    more » « less
  7. Abstract Estimates suggest that over 4 gigatons per year of carbon dioxide (Gt-CO2year−1) be removed from the atmosphere by 2050 to meet international climate goals. One strategy for carbon dioxide removal is seaweed farming; however its global potential remains highly uncertain. Here, we apply a dynamic seaweed growth model that includes growth-limiting mechanisms, such as nitrate supply, to estimate the global potential yield of four types of seaweed. We estimate that harvesting 1 Gt year−1of seaweed carbon would require farming over 1 million km2of the most productive exclusive economic zones, located in the equatorial Pacific; the cultivation area would need to be tripled to attain an additional 1 Gt year−1of harvested carbon, indicating dramatic reductions in carbon harvest efficiency beyond the most productive waters. Improving the accuracy of annual harvest yield estimates requires better understanding of biophysical constraints such as seaweed loss rates (e.g., infestation, disease, grazing, wave erosion). 
    more » « less